Load-Specific Performance Fatigability, Coactivation, and Neuromuscular Responses to Fatiguing Forearm Flexion Muscle Actions in Women

Author:

Benitez Brian1,Dinyer-McNeely Taylor K.2,McCallum Lindsay1,Kwak Minyoung1,Succi Pasquale J.1,Bergstrom Haley C.1

Affiliation:

1. Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky; and

2. School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, Oklahoma

Abstract

Abstract Benitez, B, Dinyer-McNeeley, TK, McCallum, L, Kwak, M, Succi, PJ, and Bergstrom, HC. Load-specific performance fatigability, coactivation, and neuromuscular responses to fatiguing forearm flexion muscle actions in women. J Strength Cond Res 37(4): 769–779, 2023—This study examined the effects of fatiguing, bilateral, dynamic constant external resistance (DCER) forearm flexion on performance fatigability, coactivation, and neuromuscular responses of the biceps brachii (BB) and triceps brachii (TB) at high (80% 1 repetition maximum [1RM]) and low (30% 1RM) relative loads in women. Ten women completed 1RM testing and repetitions to failure (RTF) at 30 and 80% 1RM. Maximal voluntary isometric force was measured before and after RTF. Electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) signals were measured from the BB and TB. Performance fatigability was greater (p < 0.05) after RTF at 30% (%∆ = 41.56 ± 18.61%) than 80% (%∆ = 19.65 ± 8.47%) 1RM. There was an increase in the coactivation ratio (less coactivation) between the initial and final repetitions at 30%, which may reflect greater increases in agonist muscle excitation (EMG AMP) relative to the antagonist for RTF at 30% than 80% 1RM. The initial repetitions EMG AMP was greater for 80% than 30% 1RM, but there was no difference between loads for the final repetitions. For both loads, there were increases in EMG MPF and MMG AMP and decreases in MMG MPF that may suggest fatigue-dependent recruitment of higher-threshold motor units. Thus, RTF at 30 and 80% 1RM during DCER forearm flexion may not necessitate additional muscle excitation to the antagonist muscle despite greater fatigability after RTF at 30% 1RM. These specific acute performance and neuromuscular responses may provide insight into the unique mechanism underlying adaptations to training performed at varying relative loads.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3