Relationship Between the Number of Repetitions in Reserve and Lifting Velocity During the Prone Bench Pull Exercise: An Alternative Approach to Control Proximity-to-Failure

Author:

Pérez-Castilla Alejandro12ORCID,Miras-Moreno Sergio3,Weakley Jonathon456,García-Ramos Amador37

Affiliation:

1. Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain;

2. SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain;

3. Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain;

4. School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia;

5. Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Brisbane, Australia;

6. Carnegie Applied Rugby Research (CARR) Centre, Institute of Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom; and

7. Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile

Abstract

Abstract Pérez-Castilla, A, Miras-Moreno, S, Weakley, J, and García-Ramos, A. Relationship between the number of repetitions in reserve and lifting velocity during the prone bench pull exercise: an alternative approach to control proximity-to-failure. J Strength Cond Res 37(8): 1551–1558, 2023—This study aimed to explore the goodness-of-fit and accuracy of both general and individual relationships between the number of repetitions in reserve (RIR) and the repetition velocity during the Smith machine prone bench pull exercise. Fifteen male sports science students completed 3 sessions separated by 48–72 hours. The first session was used to determine the bench pull 1 repetition maximum (1RM). The second and third sessions were identical and consisted of 3 single sets (60, 70, and 80% 1RM) of repetitions to momentary muscular failure separated by 10 minutes during the Smith machine prone bench pull exercise. General (i.e., pooling together the data from the 15 subjects) and individual RIR-velocity relationships were constructed from the data collected in the second session by pooling the data from the 3 loads (multiple-loads) or specifically for each load (load-specific). The 4 RIR-velocity relationship models were ranked by their goodness-of-fit as follows: individualload-specific (r = 0.93) > individualmultiple-loads (r = 0.83) > generalmultiple-loads (r = 0.65) > generalload-specific (r = 0.61). The accuracy when predicting the RIR in the third session based on the RIR-velocity equations obtained in the second session was acceptable and comparable for the 4 RIR-velocity relationship models (absolute errors ≤2 RIR). However, the 4 RIR-velocity relationship models significantly underestimated the RIR for ≥1 RIR and overestimated the RIR for 0 RIR. These results suggest that the 4 RIR-velocity relationship models are equally effective to quantify proximity-to-failure during the Smith machine prone bench pull exercise.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,General Medicine

Reference32 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3