A robust authorship attribution on big period
-
Published:2019-08-01
Issue:4
Volume:9
Page:3167
-
ISSN:2088-8708
-
Container-title:International Journal of Electrical and Computer Engineering (IJECE)
-
language:
-
Short-container-title:IJECE
Author:
Tamboli Mubin Shoukat,Prasad Rajesh
Abstract
Authorship attribution is a task to identify the writer of unknown text and categorize it to known writer. Writing style of each author is distinct and can be used for the discrimination. There are different parameters responsible for rectifying such changes. When the writing samples collected for an author when it belongs to small period, it can participate efficiently for identification of unknown sample. In this paper author identification problem considered where writing sample is not available on the same time period. Such evidences collected over long period of time. And character n-gram, word n-gram and pos n-gram features used to build the model. As they are contributing towards style of writer in terms of content as well as statistic characteristic of writing style. We applied support vector machine algorithm for classification. Effective results and outcome came out from the experiments. While discriminating among multiple authors, corpus selection and construction were the most tedious task which was implemented effectively. It is observed that accuracy varied on feature type. Word and character n-gram have shown good accuracy than PoS n-gram.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献