Multilingual twitter sentiment analysis using machine learning

Author:

Arun K.,Srinagesh A.

Abstract

Twitter sentiment analysis is one of the leading research fields. Most of the researchers were contributed to twitter sentiment analysis in English tweets, but few researchers focus on the multilingual twitter sentiment analysis. Some challenges are hoping for the research solutions in multilingual twitter sentiment analysis. This study presents the implementation of sentiment analysis in multilingual twitter data and improves the data classification up to the adequate level of accuracy. Twitter is the sixth leading social networking site in the world. Active users for twitter in a month are 330 million. People can tweet or re-tweet in their languages and allow users to use emoji’s, abbreviations, contraction words, miss spellings, and shortcut words. The best platform for sentiment analysis is twitter. Multilingual tweets and data sparsity are the two main challenges. In this paper, the MLTSA algorithm gives the solution for these two challenges. MLTSA algorithm divides into two parts. One is detecting and translating non-English tweets into English using natural language processing (NLP). And the second one is an appropriate pre-processing method with NLP support can reduce the data sparsity. The result of the MLTSA with SVM achieves good accuracy by up to 95%.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning-based Voting Classifier for Improving Sentiment Analysis on Twitter Data;Transactions on Computer Science and Intelligent Systems Research;2024-08-12

2. Enhancing Deep Learning Models for Sentiment Analysis Integrating Texts and Emojis: A Comprehensive Survey;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12

3. Comparative Analysis of Polarity of Text-based Sentiment Analysis;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

4. Development and Comparison of Multiple Emotion Classification Models in Indonesia Text Using Machine Learning;Journal of Advances in Information Technology;2024

5. Sentiment Analysis Using Improved Atom Search Optimizer With a Simulated Annealing and ReLU Based Gated Recurrent Unit;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3