Maximum power point tracking techniques for photovoltaic systems: a comparative study

Author:

Abo-Sennah M. A.,El-Dabah M. A.,Mansour Ahmed El-Biomey

Abstract

Photovoltaic systems (PV) are one of the most important renewable energy resources (RER). It has limited energy efficiency leading to increasing the number of PV units required for certain input power i.e. to higher initial cost. To overcome this problem, maximum power point tracking (MPPT) controllers are used. This work introduces a comparative study of seven MPPT classical, artificial intelligence (AI), and bio-inspired (BI) techniques: perturb and observe (P&O), modified perturb and observe (M-P&O), incremental conductance (INC), fuzzy logic controller (FLC), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and cuckoo search (CS). Under the same climatic conditions, a comparison between these techniques in view of some criteria’s: efficiencies, tracking response, implementation cost, and others, will be performed. Simulation results, obtained using MATLAB/SIMULINK program, show that the MPPT techniques improve the lowest efficiency resulted without control. ANFIS is the highest efficiency, but it requires more sensors. CS and ANN produce the best performance, but CS provided significant advantages over others in view of low implementation cost, and fast computing time. P&O has the highest oscillation, but this drawback is eliminated using M-P&O. FLC has the longest computing time due to software complexity, but INC has the longest tracking time.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study and Simulation of an Efficient Smart MPPT Algorithm Based on Fuzzy Logic Theory;2024 12th International Conference on Smart Grid (icSmartGrid);2024-05-27

2. Artificial Intelligence Techniques for the Photovoltaic System: A Systematic Review and Analysis for Evaluation and Benchmarking;Archives of Computational Methods in Engineering;2024-05-08

3. Comprehensive Analysis of MPPT Strategies for PV Systems to Maximize Energy Yield;2024 1st International Conference on Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS);2024-04-26

4. An Improved Perturb and Observe MPPT for Photovoltaic Systems using Fuzzy Step Size;WSEAS TRANSACTIONS ON POWER SYSTEMS;2024-04-02

5. Enhanced MPPT in Partially Shaded PV Systems Using PSO Optimization Technique;2024 IEEE 4th International Conference in Power Engineering Applications (ICPEA);2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3