Two-step artificial neural network to estimate the solar radiation at Java Island

Author:

Kurniawan Adi,Shintaku Eiji

Abstract

<span>The availability of information about solar radiation characteristics, particularly solar radiation predictions, is important for efficiently designing solar energy systems. Solar radiation information is not available in Indonesia because official measurements have not been conducted by the Indonesian Meteorological, Climatology, and Geophysical Agency (BMKG). In this study, a new two-step artificial neural network (ANN) is proposed to estimate both the daily average and hourly solar radiation at Java Island, Indonesia. The input parameters for the daily average solar radiation estimation are the location and time required, along with five selected monthly meteorological parameters that BMKG predicts for the subsequent month. The selected meteorological parameters are temperatures, relative humidity, and precipitation. The estimated daily average solar radiation is then used as the input parameter of the hourly solar radiation estimation along with the local time and location. The ANN training was conducted using two years of data, 2018 and 2019, from Surabaya and Jakarta, while the validation was performed in the same cities for January through July 2020. The accuracy of the proposed method is comparable to previous studies with an average R2 of 98.70% for the daily average solar radiation estimate and 97.44% for the hourly solar radiation estimate.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3