Effective predictive modelling for coronary artery diseases using support vector machine

Author:

Nugroho Kuncahyo Setyo,Sukmadewa Anantha Yullian,Vidianto Angga,Mahmudy Wayan Firdaus

Abstract

Coronary artery disease (CAD) is a category of cardiovascular disease that causes the highest mortality rate in the world. CAD occurs due to plaque build-up on the walls of the arteries that supply blood to the heart and other organs of the body. To control the mortality rate, a practical model that is capable of predicting CAD is needed. Machine learning approaches have been used in solving various problems in various domains, including biomedicine. However, real-world data often has an unbalanced class distribution that can interfere with classifier performance. In addition, data has many features to process. This study focuses on effective modeling capable of predicting CAD using feature selection to handle high dimensional data and feature resampling to handle unbalanced data. Feature selection is very effective by eliminating irrelevant features from the training data. Hyperparameter tuning is also done to find the best combination of parameters in support vector machines (SVM). Our results show that the SVM cross-validated ten times has a more accurate training result. Furthermore, the grid search on SVM cross-validated ten times had more accurate training model results and achieved 88% accuracy on the test data.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable Heart Disease Diagnosis with Supervised Learning Methods;ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal;2023-12-29

2. Heart Plaque Detection with Improved Accuracy using Decision tree in comparison with Least Squares Support Vector Machine;CARDIOMETRY;2023-02-14

3. SVM Multi-Class Algorithm for Soybean Land Suitability Evaluation;2022 International Conference on Information Technology Research and Innovation (ICITRI);2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3