Author:
Sadgali Imane,Sael Nawal,Benabbou Faouzia
Abstract
<span lang="EN-US">Now days, the analysis of the behavior of cardholders is one of the important fields in electronic payment. This kind of analysis helps to extract behavioral and transaction profile patterns that can help financial systems to better protect their customers. In this paper, we propose an intelligent machine learning (ML) system for rules generation. It is based on a hybrid approach using rough set theory for feature selection, fuzzy logic and association rules for rules generation. A score function is defined and computed for each transaction based on the number of rules, that make this transaction suspicious. This score is kind of risk factor used to measure the level of awareness of the transaction and to improve a card fraud detection system in general. The behavior analysis level is a part of a whole financial fraud detection system where it is combined to intelligent classification to improve the fraud detection. In this work, we also propose an implementation of this system integrating the behavioral layer. The system results obtained are very convincing and the consumed time by our system, per transaction was 6 ms, which prove that our system is able to handle real time process.</span>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献