An internet of things-based automatic brain tumor detection system

Author:

Rahman Md. LizurORCID,Reza Ahmed WasifORCID,Shabuj Shaiful IslamORCID

Abstract

Due to the advances in information and communication technologies, the usage of the internet of things (IoT) has reached an evolutionary process in the development of the modern health care environment. In the recent human health care analysis system, the amount of brain tumor patients has increased severely and placed in the 10th position of the leading cause of death. Previous state-of-the-art techniques based on magnetic resonance imaging (MRI) faces challenges in brain tumor detection as it requires accurate image segmentation. A wide variety of algorithms were developed earlier to classify MRI images which are computationally very complex and expensive. In this paper, a cost-effective stochastic method for the automatic detection of brain tumors using the IoT is proposed. The proposed system uses the physical activities of the brain to detect brain tumors. To track the daily brain activities, a portable wrist band named Mi Band 2, temperature, and blood pressure monitoring sensors embedded with Arduino-Uno are used and the system achieved an accuracy of 99.3%. Experimental results show the effectiveness of the designed method in detecting brain tumors automatically and produce better accuracy in comparison to previous approaches.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biologically Inspired Spiking CNN for Brain Tumor Classification;2024 5th International Conference on Image Processing and Capsule Networks (ICIPCN);2024-07-03

2. Deep Learning-based Thigh Muscle Investigation Using MRI For Prosthetic Development for Patients Undergoing Total Knee Replacement (TKR);Current Medical Imaging Reviews;2024-05-09

3. Abnormal Brain Tumors Classification Using ResNet50 and Its Comprehensive Evaluation;IEEE Access;2024

4. Introducing a deep learning method for brain tumor classification using MRI data towards better performance;Informatics in Medicine Unlocked;2024

5. Brain Tumor Detection and Classification Using Deep Learning;2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3