Abstract
Due to the advances in information and communication technologies, the usage of the internet of things (IoT) has reached an evolutionary process in the development of the modern health care environment. In the recent human health care analysis system, the amount of brain tumor patients has increased severely and placed in the 10th position of the leading cause of death. Previous state-of-the-art techniques based on magnetic resonance imaging (MRI) faces challenges in brain tumor detection as it requires accurate image segmentation. A wide variety of algorithms were developed earlier to classify MRI images which are computationally very complex and expensive. In this paper, a cost-effective stochastic method for the automatic detection of brain tumors using the IoT is proposed. The proposed system uses the physical activities of the brain to detect brain tumors. To track the daily brain activities, a portable wrist band named Mi Band 2, temperature, and blood pressure monitoring sensors embedded with Arduino-Uno are used and the system achieved an accuracy of 99.3%. Experimental results show the effectiveness of the designed method in detecting brain tumors automatically and produce better accuracy in comparison to previous approaches.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献