Comparative analysis of recent metaheuristic algorithms for maximum power point tracking of solar photovoltaic systems under partial shading conditions

Author:

Ravi SurajORCID,Premkumar ManoharanORCID,Abualigah LaithORCID

Abstract

<span lang="EN-US">The photovoltaic (PV) system comprises one or more solar panels, a converter/inverter, controllers, and other mechanical and electrical elements that utilize the generated electrical energy by the PV modules. The PV systems are ranged from small roofs or transportable units to massive electric utility plants. The maximum power point tracking (MPPT) controller has been used in PV systems to get the maximum power available. In addition, the MPPT controller is much essential for PV systems to protect the battery devices or direct loads from the power fluctuations received from solar PV panels. There are several MPPT control mechanisms available right now. The most common and commonly applied approaches under constant irradiance are perturb and observe (P&amp;O) and incremental conductance (INC). But such methods show variations in the maximum power point. In this sense, this paper analyses and utilizes two recent metaheuristic algorithms called artificial rabbit optimization (ARO) and the most valuable player (MVP) algorithm for MPPT applications. The performance comparisons are made with the most preferred traditional algorithms, such as P&amp;O and INC. Based on the result obtained, this study recommends that ARO perform better in standard testing conditions than all the other algorithms, but in partially shaded conditions, the MVP algorithm performs better in terms of efficiency and tracking speed.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

General Agricultural and Biological Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3