An efficient hybrid approach for medical images enhancement

Author:

Saroj Sushil Kumar

Abstract

Medical images have various critical usages in the field of medical science and healthcare engineering. These images contain information about many severe diseases. Health professionals identify various diseases by observing the medical images. Quality of medical images directly affects the accuracy of detection and diagnosis of various diseases. Therefore, quality of images must be as good as possible. Different approaches are existing today for enhancement of medical images, but quality of images is not good. In this literature, we have proposed a novel approach that uses principal component analysis (PCA), multi-scale switching morphological operator (MSMO) and contrast limited adaptive histogram equalization (CLAHE) methods in a unique sequence for this purpose. We have conducted exhaustive experiments on large number of images of various modalities such as MRI, ultrasound, and retina. Obtained results demonstrate that quality of medical images processed by proposed approach has significantly improved and better than other existing methods of this field.

Publisher

Universitat Autonoma de Barcelona

Subject

Computer Vision and Pattern Recognition,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancement X-ray image using modified dark channel prior based on Otsu segmentation;Journal of Optics;2024-06-29

2. X-ray Image Contrast Enhancement Approach;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

3. Lung computed tomography image enhancement using U‐Net segmentation;International Journal of Imaging Systems and Technology;2024-04-04

4. A Comparative Study of Image Enhancement Algorithms for Abdomen CT Images;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

5. Increasing Contrast in X-ray Images Using Retinex- and CLAHE-Based Region Segmentation;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3