Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

Author:

Kumari MamtaORCID,Acharya AmitabhaORCID,Krishnamurthy Praveen Thaggikuppe

Abstract

Nanotechnology provides effective methods for precisely delivering chemotherapeutics to cancer cells, thereby improving efficacy and reducing off-target side effects. The targeted delivery of nanoscale chemotherapeutics is accomplished by two different approaches, namely the exploitation of leaky tumor vasculature (EPR effect) and the surface modification of nanoparticles (NPs) with various tumor-homing peptides, aptamers, oligonucleotides, and monoclonal antibodies (mAbs). Because of higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of chemotherapeutics specifically to the targeted cancer cells. ACNPs combine the benefits of NPs and mAbs to provide high drug loads at the tumor site with better selectivity and delivery efficiency. The mAbs on the NP surfaces recognize their specific receptors expressed on the target cells and release the chemotherapeutic agent in a controlled manner. Appropriately designed and synthesized ACNPs are essential to fully realize their therapeutic benefits. In blood stream, ACNPs instantly interact with biological molecules, and a protein corona is formed. Protein corona formation triggers an immune response and affects the targeting ability of the nanoformulation. In this review, we provide recent findings to highlight several antibody conjugation methods such as adsorption, covalent conjugation, and biotin–avidin interaction. This review also provides an overview of the many effects of the protein corona and the theranostic applications of ACNPs for the treatment of cancer.

Funder

DST-FIST

CSIR

All India Council for Technical Education

Publisher

Beilstein Institut

Subject

Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3