Optimization of a Moving Averages Program Using a Simulated Annealing Algorithm: The Goal is to Monitor the Process Not the Patients

Author:

Ng David1,Polito Frank A1,Cervinski Mark A12

Affiliation:

1. Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH

2. The Geisel School of Medicine at Dartmouth, Hanover, NH

Abstract

Abstract BACKGROUND The patient moving average (MA) is a QC strategy using the mean patient result to continuously monitor assay performance. Developing sensitive MA protocols that rapidly detect systematic error (SE) is challenging. We compare MA protocols established using a previously published report as a guide and demonstrate the use of a simulated annealing (SA) algorithm to optimize MA protocol performance. METHODS Using 400 days of patient data, we developed MA protocols for 23 assays. MA protocols developed using a previously published report and our SA algorithm were compared using the average number of patient samples affected until error detection (ANPed). RESULTS Comparison of the strategies demonstrated that protocols developed using the SA algorithm generally proved superior. Some analytes such as total protein showed considerable improvement, with positive SE equal to 0.8 g/dL detected with an ANPed of 135 samples using the previously published method whereas the SA algorithm detected this SE with an ANPed of 18. Not all analytes demonstrated similar improvement with the SA algorithm. Phosphorus, for instance, demonstrated only minor improvements, with a positive SE of 0.9 mg/dL detected with an ANPed of 34 using the previously published method vs an ANPed of 29 using the SA algorithm. We also demonstrate an example of SE detection in a live environment using the SA algorithm derived MA protocols. CONCLUSIONS The SA algorithm–developed MA protocols are currently in use in our laboratory and they rapidly detect SE, reducing the number of samples requiring correction and improving patient safety.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3