High-Level Multiplex Genotyping of Polymorphisms Involved in Folate or Homocysteine Metabolism by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

Author:

Meyer Klaus1,Fredriksen Åse1,Ueland Per Magne1

Affiliation:

1. LOCUS for Homocysteine and Related Vitamins, University of Bergen, Bergen, Norway

Abstract

AbstractBackground: Increased plasma total homocysteine (tHcy), a risk factor for cardiovascular disease, is related to genetic, environmental, and nutritional factors, in particular folate status. Future large epidemiologic studies of the genetic basis of hyperhomocysteinemia will require high-throughput assays for polymorphisms of genes related to folate and Hcy metabolism.Method: We developed a high-level multiplex genotyping method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of 12 polymorphisms in 8 genes involved in folate or Hcy metabolism. The assay includes methylenetetrahydrofolate reductase (MTHFR) 677C>T and 1298A>C, methionine synthase (MTR) 2756A>G, methionine synthase reductase (MTRR) 66A>G, cystathionine β-synthase (CBS) 844ins68 and 699C>T, transcobalamin II (TCII) 776C>G and 67A>G, reduced folate carrier-1 (RFC1) 80G>A, paraoxonase-1 (PON1) 575A>G and 163T>A, and betaine homocysteine methyltransferase (BHMT) 742G>A.Results: The failure rate of the assay was ≤1.7% and was attributable to unsuccessful DNA purification, nanoliter dispensing, and spectrum calibration. Most errors were related to identification of heterozygotes as homozygotes. The mean error rate was 0.26%, and error rates differed for the various single-nucleotide polymorphisms. Identification of CBS 844ins68 was carried out by a semiquantitative approach. The throughput of the MALDI-TOF MS assay was 1152 genotypes within 20 min.Conclusions: This high-level multiplex method is able to genotype 12 polymorphisms involved in folate or Hcy metabolism. The method is rapid and reproducible and could facilitate large-scale studies of the genetic basis of hyperhomocysteinemia and associated pathologies.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3