Neonatal Salivary Analysis Reveals Global Developmental Gene Expression Changes in the Premature Infant

Author:

Maron Jill L1,Johnson Kirby L2,Rocke David M3,Cohen Michael G1,Liley Albert J4,Bianchi Diana W12

Affiliation:

1. Divisions of Newborn Medicine and

2. Genetics, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, MA

3. Division of Biostatistics, University of California Davis, Davis, CA

4. University of Otago, Dunedin, New Zealand

Abstract

Abstract Background: There is an important need to develop noninvasive biomarkers to detect disease in premature neonates. Our objective was to determine if salivary genomic analysis provides novel information about neonatal expression of developmental genes. Methods: Saliva (50–200 μL) was prospectively collected from 5 premature infants at 5 time points: before, starting, and advancing enteral nutrition; at the introduction of oral feeds; and at advanced oral feeds. Salivary RNA was extracted, amplified, and hybridized onto whole-genomic microarrays. Results: Bioinformatics analyses identified 9286 gene transcripts with statistically significant gene expression changes across individuals over time. Of these genes, 3522 (37.9%) were downregulated, and 5764 (62.1%) were upregulated. Gene expression changes were highly associated with developmental pathways. Significantly downregulated expression was seen in embryonic development, connective tissue development and function, hematologic system development and function, and survival of the organism (10−14 < P < 10−3). Conversely, genes associated with behavior, nervous system development, tissue development, organ development, and digestive system development were significantly upregulated (10−11 < P < 10−2). Conclusions: Comparative genomic salivary analyses provide robust, comprehensive, real-time information regarding nearly all organs and tissues in the developing preterm infant. This innovative and noninvasive technique represents a new approach for monitoring health, disease, and development in this vulnerable patient population. By comparing these data in healthy infants with data from infants who develop medical complications, we expect to identify new biomarkers that will ultimately improve newborn care.

Funder

National Institute of Child Health and Human Development

Tufts Medical Center

Publisher

Oxford University Press (OUP)

Subject

Biochemistry (medical),Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3