Toward Electronic Surveillance of Invasive Mold Diseases in Hematology-Oncology Patients: An Expert System Combining Natural Language Processing of Chest Computed Tomography Reports, Microbiology, and Antifungal Drug Data

Author:

Ananda-Rajah Michelle R.1,Bergmeir Christoph1,Petitjean François1,Slavin Monica A.1,Thursky Karin A.1,Webb Geoffrey I.1

Affiliation:

1. Michelle R. Ananda-Rajah, Alfred Health; Michelle R. Ananda-Rajah, Christoph Bergmeir, François Petitjean, and Geoffrey I. Webb, Monash University; and Monica A. Slavin and Karin A. Thursky, Peter Doherty Centre for Infection and Immunity; University of Melbourne, Melbourne, Victoria, Australia.

Abstract

Purpose Prospective epidemiologic surveillance of invasive mold disease (IMD) in hematology patients is hampered by the absence of a reliable laboratory prompt. This study develops an expert system for electronic surveillance of IMD that combines probabilities using natural language processing (NLP) of computed tomography (CT) reports with microbiology and antifungal drug data to improve prediction of IMD. Methods Microbiology indicators and antifungal drug–dispensing data were extracted from hospital information systems at three tertiary hospitals for 123 hematology-oncology patients. Of this group, 64 case patients had 26 probable/proven IMD according to international definitions, and 59 patients were uninfected controls. Derived probabilities from NLP combined with medical expertise identified patients at high likelihood of IMD, with remaining patients processed by a machine-learning classifier trained on all available features. Results Compared with the baseline text classifier, the expert system that incorporated the best performing algorithm (naïve Bayes) improved specificity from 50.8% (95% CI, 37.5% to 64.1%) to 74.6% (95% CI, 61.6% to 85.0%), reducing false positives by 48% from 29 to 15; improved sensitivity slightly from 96.9% (95% CI, 89.2% to 99.6%) to 98.4% (95% CI, 91.6% to 100%); and improved receiver operating characteristic area from 73.9% (95% CI, 67.1% to 80.6%) to 92.8% (95% CI, 88% to 97.5%). Conclusion An expert system that uses multiple sources of data (CT reports, microbiology, antifungal drug dispensing) is a promising approach to continuous prospective surveillance of IMD in the hospital, and demonstrates reduced false notifications (positives) compared with NLP of CT reports alone. Our expert system could provide decision support for IMD surveillance, which is critical to antifungal stewardship and improving supportive care in cancer.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3