Affiliation:
1. Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China
2. Clinical Pharmacology and Quantitative Science, Genmab Inc, Princeton, NJ
3. Department of Health Data Science, Anhui Medical University, Hefei, Anhui, China
Abstract
PURPOSE To use modern machine learning approaches to enhance and automate the feature extraction from the longitudinal circulating tumor DNA (ctDNA) data and to improve the prediction of survival and disease progression, risk stratification, and treatment strategies for patients with 1L non–small cell lung cancer (NSCLC). MATERIALS AND METHODS Using IMpower150 trial data on patients with untreated metastatic NSCLC treated with atezolizumab and chemotherapies, we developed a machine learning algorithm to extract predictive features from ctDNA kinetics, improving survival and progression prediction. We analyzed kinetic data from 17 ctDNA summary markers, including cell-free DNA concentration, allele frequency, tumor molecules in plasma, and mutation counts. RESULTS Three hundred and ninety-eight patients with ctDNA data (206 in training and 192 in validation) were analyzed. Our models outperformed existing workflow using conventional temporal ctDNA features, raising overall survival (OS) concordance index to 0.72 and 0.71 from 0.67 and 0.63 for C3D1 and C4D1, respectively, and substantially improving progression-free survival (PFS) to approximately 0.65 from the previous 0.54-0.58, a 12%-20% increase. Additionally, they enhanced risk stratification for patients with NSCLC, achieving clear OS and PFS separation. Distinct patterns of ctDNA kinetic characteristics (eg, baseline ctDNA markers, depth of ctDNA responses, and timing of ctDNA clearance, etc) were revealed across the risk groups. Rapid and complete ctDNA clearance appears essential for long-term clinical benefit. CONCLUSION Our machine learning approach offers a novel tool for analyzing ctDNA kinetics, extracting critical features from longitudinal data, improving our understanding of the link between ctDNA kinetics and progression/mortality risks, and optimizing personalized immunotherapies for 1L NSCLC.
Publisher
American Society of Clinical Oncology (ASCO)