Automated Extraction of Grade, Stage, and Quality Information From Transurethral Resection of Bladder Tumor Pathology Reports Using Natural Language Processing

Author:

Glaser Alexander P.1,Jordan Brian J.1,Cohen Jason1,Desai Anuj1,Silberman Philip1,Meeks Joshua J.1

Affiliation:

1. Alexander P. Glaser, Brian J. Jordan, Jason Cohen, Anuj Desai, Joshua J. Meeks, Feinberg School of Medicine, Northwestern University; Alexander P. Glaser, Brian J. Jordan, Joshua J. Meeks, Robert H. Lurie Comprehensive Cancer Center, Northwestern University; and Philip Silberman, Clinical and Translational Sciences Institute, Northwestern University, Chicago, IL.

Abstract

Purpose Bladder cancer is initially diagnosed and staged with a transurethral resection of bladder tumor (TURBT). Patient survival is dependent on appropriate sampling of layers of the bladder, but pathology reports are dictated as free text, making large-scale data extraction for quality improvement challenging. We sought to automate extraction of stage, grade, and quality information from TURBT pathology reports using natural language processing (NLP). Methods Patients undergoing TURBT were retrospectively identified using the Northwestern Enterprise Data Warehouse. An NLP algorithm was then created to extract information from free-text pathology reports and was iteratively improved using a training set of manually reviewed TURBTs. NLP accuracy was then validated using another set of manually reviewed TURBTs, and reliability was calculated using Cohen’s κ. Results Of 3,042 TURBTs identified from 2006 to 2016, 39% were classified as benign, 35% as Ta, 11% as T1, 4% as T2, and 10% as isolated carcinoma in situ. Of 500 randomly selected manually reviewed TURBTs, NLP correctly staged 88% of specimens (κ = 0.82; 95% CI, 0.78 to 0.86). Of 272 manually reviewed T1 tumors, NLP correctly categorized grade in 100% of tumors (κ = 1), correctly categorized if muscularis propria was reported by the pathologist in 98% of tumors (κ = 0.81; 95% CI, 0.62 to 0.99), and correctly categorized if muscularis propria was present or absent in the resection specimen in 82% of tumors (κ = 0.62; 95% CI, 0.55 to 0.73). Discrepancy analysis revealed pathologist notes and deeper resection specimens as frequent reasons for NLP misclassifications. Conclusion We developed an NLP algorithm that demonstrates a high degree of reliability in extracting stage, grade, and presence of muscularis propria from TURBT pathology reports. Future iterations can continue to improve performance, but automated extraction of oncologic information is promising in improving quality and assisting physicians in delivery of care.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3