Overcoming the limitations of atomic-scale simulations on semiconductor catalysis with changing Fermi level and surface treatment

Author:

Ji Seulgi1,Jeon Dong Won23,Choi Junghyun4,Cho Haneol5,Park Bo-In6,Roh Ilpyo7,Choi Hyungil7,Kim Chansoo58,Kim Jung Kyu9ORCID,Sim Uk10ORCID,Li Danlei11,Ko Hyunseok12,Cho Sung Beom23ORCID,Choi Heechae111ORCID

Affiliation:

1. Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, Cologne, 50939, Germany

2. Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea

3. Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea

4. School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea

5. AI, Information and Reasoning (AI/R) Laboratory, Korea Institute of Science and Technology (KIST), Hwrangro 14Gil 5, Seoul, Republic of Korea

6. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

7. MO R&D Center, M.O.P Co., Ltd, Seoul, 07281, Republic of Korea

8. AI-Robot Department, University of Science and Technology (UST), Republic of Korea

9. School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea

10. Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Republic of Korea

11. Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China

12. Center of Material Digitalization, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, Gyeongnam, 52851, Republic of Korea

Abstract

A new groundbreaking method for efficient optimization of doping concentration and cocatalyst materials for Fermi level engineering of wide band gap semiconductors.

Funder

National Research Foundation of Korea

Key Laboratory in Science and Technology Development Project of Suzhou

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Science and ICT, South Korea

Publisher

Royal Society of Chemistry (RSC)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3