The co-electrolysis of CO2–H2O to methane via a novel micro-tubular electrochemical reactor
Author:
Affiliation:
1. Department of Mechanical Engineering
2. University of South Carolina
3. Columbia
4. USA
5. School of Power and Mechanical Engineering
6. National Institute of Clean and Low-Carbon Energy (NICE)
7. Beijing 102211
8. P. R. China
Abstract
Efficient and direct conversion of CO2 to hydrocarbons through electrolysis is a promising approach for energy storage and CO2 utilization.
Funder
Division of Materials Research
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/TA/C6TA10252B
Reference36 articles.
1. High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells
2. Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC)
3. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides
4. Exsolved Fe–Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells
5. A nanostructured ceramic fuel electrode for efficient CO2/H2O electrolysis without safe gas
Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. From concept to commercialization: A review of tubular solid oxide fuel cell technology;Journal of Energy Chemistry;2024-10
2. Carbon dioxide capture by direct methanation in co-electrolysis using solid oxide cell;Sustainable Materials and Technologies;2024-07
3. Syngas Production from CO2 and H2O via Solid-Oxide Electrolyzer Cells: Fundamentals, Materials, Degradation, Operating Conditions, and Applications;Chemical Reviews;2024-04-15
4. Methanation of CO2 on Cu in a tubular co-ionic SOEC;International Journal of Hydrogen Energy;2024-01
5. Developing solid oxide cells for sustainable generation of chemicals;Chem Catalysis;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3