Exploratory machine-learned theoretical chemical shifts can closely predict metabolic mixture signals
Author:
Affiliation:
1. RIKEN Center for Sustainable Resource Science
2. Yokohama
3. Japan
4. Graduate School of Medical Life Science
5. Yokohama City University
6. Department of Information Systems
7. Niigata University of International and Information Studies
Abstract
Exploratory machine-learned model can predict the experimental chemical shifts with high accuracy, and the corrected theoretical values can be used to assign NMR signals in molecular complexities.
Funder
Ministry of Agriculture, Forestry and Fisheries
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2018/SC/C8SC03628D
Reference32 articles.
1. The future of NMR-based metabolomics
2. Automated protein structure calculation from NMR data
3. Carbon Isotopomer Analysis with Non-Unifom Sampling HSQC NMR for Cell Extract and Live Cell Metabolomics Studies
4. Human‐ and computer‐accessible 2D correlation data for a more reliable structure determination of organic compounds. Future roles of researchers, software developers, spectrometer managers, journal editors, reviewers, publisher and database managers toward artificial‐intelligence analysis of NMR spectra
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tracking Metabolite Variations during the Degradation of Vegetables in Rice Bran Bed with Intact-State Nuclear Magnetic Resonance Spectroscopy;Metabolites;2024-07-19
2. New 1,3,4-Thiadiazole Derivatives as α-Glucosidase Inhibitors: Design, Synthesis, DFT, ADME, and In Vitro Enzymatic Studies;ACS Omega;2024-02-05
3. Biostatistics in Agriculture - Modern Agricultural Statistics Looking at the Roots of Agricultural Data Analysis -;Japanese Journal of Biometrics;2023-10-31
4. Computation of CCSD(T)-Quality NMR Chemical Shifts via Δ-Machine Learning from DFT;Journal of Chemical Theory and Computation;2023-06-01
5. Machine learning and analytical methods for single-molecule conductance measurements;Chemical Communications;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3