Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO2 for enhancement of carrier transport

Author:

Lu Yi12345ORCID,Liu Yi-Xuan1234,He Li1234,Wang Li-Ying67894,Liu Xiao-Long51011124ORCID,Liu Jia-Wen1234,Li Yuan-Zhou1234,Tian Ge123413,Zhao Heng1234,Yang Xiao-Hang1415164,Liu Jie1234,Janiak Christoph17181920ORCID,Lenaerts Silvia2122232425,Yang Xiao-Yu12345ORCID,Su Bao-Lian123426ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of materials science and engineering

2. Wuhan University of Technology

3. Wuhan

4. China

5. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) & School of Chemical Engineering and Technology

6. State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics

7. Wuhan Institute of Physics and Mathematics

8. The Chinese Academy of Sciences

9. Wuhan 430071

10. School of Materials

11. Sun Yat-sen University

12. Zhuhai

13. School of Engineering and Applied Sciences

14. College of Chemistry

15. Jilin University

16. Changchun

17. Institut für Anorganische Chemie und Strukturchemie

18. Heinrich-Heine-Universität Düsseldorf

19. 40204 Düsseldorf

20. Germany

21. Research Group of Sustainable Energy and Air Purification (DuEL)

22. Department of Bioscience Engineering

23. University of Antwerp

24. Antwerp

25. Belgium

26. Laboratory of Inorganic Materials Chemistry (CMI)

Abstract

The interfacial co-existence of O- and Ti-vacancies in crystalline TiO2 assisted by rGO sheets is fabricated, improving carrier transport with a unique electron pathway from O- to Ti-vacancies, and minimizing energy loss with a nano-fusion interface between TiO2 and rGO.

Funder

National Natural Science Foundation of China

International Science and Technology Cooperation Programme

Fundamental Research Funds for the Central Universities

Jilin Scientific and Technological Development Program

Natural Science Foundation of Hubei Province

Publisher

Royal Society of Chemistry (RSC)

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3