Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations
Author:
Affiliation:
1. Peter Grünberg Institut
2. Forschungszentrum Jülich GmbH
3. Jülich, Germany
4. Institut für Werkstoffe der Elektrotechnik II
5. RWTH Aachen University
6. Aachen, Germany
Abstract
A kinetic Monte Carlo model for ECM cells is presented that explains the influence of mechanical stress on filamentary growth.
Funder
Deutsche Forschungsgemeinschaft
Samsung
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2015/NR/C5NR02258D
Reference37 articles.
1. Power and Energy Perspectives of Nonvolatile Memory Technologies
2. Cation-based resistance change memory
3. Nanoionics-based resistive switching memories
4. G. Palma , E.Vianello , G.Molas , C.Cagli , F.Longnos , J.Guy , M.Reyboz , C.Carabasse , M.Bernard , F.Dahmani , D.Bretegnier , J.Liebault and B.De Salvo , Jpn. J. Appl. Phys , 2013 , 52
5. One-dimensional model of the programming kinetics of conductive-bridge memory cells
Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Modeling and simulation of electrochemical and surface diffusion effects in filamentary cation-based resistive memory devices;Applied Mathematical Modelling;2024-10
2. Simulations of RF wave-induced modulation of filament growth and bipolar resistive switching in conductive bridging RAM;Journal of Computational Electronics;2024-09-10
3. Enabling Ab Initio Molecular Dynamics under Bias: The CP2K+SMEAGOL Interface for Integrating Density Functional Theory and Non-Equilibrium Green Functions;Journal of Chemical Theory and Computation;2024-07-16
4. Forming-Free, Low-Voltage, and High-Speed Resistive Switching in Ag/Oxygen-Deficient Vanadium Oxide(VOx)/Pt Device through Two-Step Resistance Change by Ag Filament Formation;ACS Applied Materials & Interfaces;2024-05-13
5. 3D simulation of conductive nanofilaments in multilayer h-BN memristors via a circuit breaker approach;Materials Horizons;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3