Efficient neural network models of chemical kinetics using a latent asinh rate transformation

Author:

Döppel Felix A.1ORCID,Votsmeier Martin12

Affiliation:

1. Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany

2. Umicore AG & Co. KG, Rodenbacher Chaussee 4, 63457 Hanau, Germany

Abstract

The proposed latent transformation approach allows building lightweight neural networks that accelerate reactor simulations significantly.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Royal Society of Chemistry (RSC)

Subject

Fluid Flow and Transfer Processes,Process Chemistry and Technology,Chemical Engineering (miscellaneous),Chemistry (miscellaneous),Catalysis

Reference59 articles.

1. Computational Fluid Dynamics of Reacting Flows at Surfaces: Methodologies and Applications

2. Quo vadis multiscale modeling in reaction engineering? – A perspective

3. Intensification of catalytic reactors: A synergic effort of Multiscale Modeling, Machine Learning and Additive Manufacturing

4. Insights into reactors through CFD simulations

5. T. S.Brown , H.Antil , R.Löhner , F.Togashi and D.Verma , Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , Springer International Publishing , 2021 , vol. 12761 , LNCS, pp. 23–39

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3