Stochastic Emerging Resistive Memories for Unconventional Computing

Author:

Wang Dingchen12,Shi Shuhui12,Zhang Yi12,Shang Dashan3,Wang Qing4,Yu Hongyu4,Wang Zhongrui12

Affiliation:

1. aDepartment of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

2. bACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park, Hong Kong

3. cKey Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China

4. dSchool of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China

Abstract

Stochasticity plays a critical role in biological neural systems, which also inspires various statistical learning approaches. However, conventional digital electronics on silicon-based transistors practice deterministic Boolean logic, making it less favorable for solving problems involving stochasticity. This is further intensified by the von Neumann bottleneck of digital systems and the slowdowns of Moore’s law. Emerging resistive memory, such as those based on redox reactions and phase transitions, features intrinsic stochasticity due to their underlying physical mechanisms. In addition, such devices integrate storage and computing functions, like that of the brain. They are also endowed with superior scalability and stack-ability due to their simple and low-cost structures. In this chapter, we will survey the broad spectrum of unconventional computing applications of stochastic emerging resistive memories (RMs) from their physics origin to system-level applications. Firstly, we review the mainstream resistive memories and the origin of stochasticity in both programming and charge transport. Secondly, we explore how the stochasticity of RMs benefits bio-inspired computing, including artificial neural networks, spiking neural networks, and reservoir computing. Thirdly, we discuss how stochasticity benefits energy-based networks, such as Hopfield networks, in solving optimization problems. Fourthly, we survey the applications to cybersecurity, including how the cycle-to-cycle (C2C) variation is leveraged for random number generation and how the device-to-device (D2D) variation contributes to hardware identities. Last but not least, we introduce RM-based probability bit generation and bit stream decorrelation for probabilistic computing, with applications to Bayesian neural networks and Markov chain Monte Carlo algorithms.

Publisher

Royal Society of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3