Single crystal H-Nb2O5 growing along the [001] crystal direction for ultrafast lithium storage
Author:
Affiliation:
1. School of Environment and Energy, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510640, P. R. China
Abstract
Funder
National Natural Science Foundation of China
Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program
China Association for Science and Technology
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2023/TA/D2TA07935F
Reference62 articles.
1. Two-Dimensional Materials to Address the Lithium Battery Challenges
2. Boosting the performance of soft carbon negative electrode for high power Na-ion batteries and Li-ion capacitors through a rational strategy of structural and morphological manipulation
3. In Situ Surface Self‐Reconstruction Strategies in Li‐Rich Mn‐Based Layered Cathodes for Energy‐Dense Li‐Ion Batteries
4. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials
5. Two‐Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Complementary niobium-based heterostructure for ultrafast and durable lithium storage;Nano Energy;2024-03
2. “Fast-Charging” Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure;ACS Nano;2024-01-15
3. Fast-charging anodes for lithium ion batteries: progress and challenges;Chemical Communications;2024
4. In Situ Construction T-Nb2o5 Nanolayer on Porous Carbon Cloth as Binder-Free Anode for Lithium-Ion Battery with Long Cycle Life;2024
5. In-Depth Investigation of the Mechanism of Dehydration-Induced Phase Transformation from Nb3O7(OH) to H-Nb2O5: A Theoretical and Experimental Approach;Inorganic Chemistry;2023-11-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3