The use of artificial intelligence to detect defects in building structures
Author:
Knyazeva Natal'ya1, Nazojkin Evgenij2, Orekhov Aleksej3
Affiliation:
1. Moscow State University of Civil Engineering (National Research University) 2. Russian Biotechnological University (ROSBIOTECH) 3. Rossiyskiy biotehnologicheskiy universitet (ROSBIOTEH)
Abstract
Monitoring the technical condition of structures is the most important task aimed at improving the reliability and safety of buildings and structures. During the survey, a set of tasks arises to assess visible defects and damages, the solution of which requires the experience and attention of structural survey specialists. Often the omission of visible defects is the most common mistake when examining the engineering and technical condition of a building. Technical vision, as a method of classifying objects in images, can significantly improve the efficiency of visual inspection and reduce the number of errors on the object. In this paper, an algorithm for detecting damage to reinforced concrete structures based on a convolutional neural network model created in the Python programming language is investigated. The neural network was trained and tested on real defects of a monolithic reinforced concrete building. According to the results of the work, the high efficiency of artificial intelligence in determining defects and damages in the framework of the survey of the engineering and technical condition of monolithic reinforced concrete structures of a building under construction was revealed. Automation of works on visual inspection of building structures is a promising direction for the development of artificial intelligence.
Publisher
RIOR Publishing Center
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management
Reference13 articles.
1. Shi, С. and Pun, С.-М., “Supcrpixcl-bascd 3D deep neural networks for hypcrspcctral image classification”, Pattern Rccognit., Vol. 74, Pages 600-616, 2018., Shi, C. and Pun, C.-M., “Supcrpixcl-bascd 3D deep neural networks for hypcrspcctral image classification”, Pattern Rccognit., Vol. 74, Pages 600-616, 2018. 2. Li, J., Xia, C. and Chen, X., “A Benchmark Dataset and Salicncy-Guidcd Stacked Autocncodcrs for Video-Based Salient Object Detection”, IEEE Trans. Image Process., Vol. 27, Issue 1, Pages 349- 364, 2018., Li, J., Xia, C. and Chen, X., “A Benchmark Dataset and Salicncy-Guidcd Stacked Autocncodcrs for Video-Based Salient Object Detection”, IEEE Trans. Image Process., Vol. 27, Issue 1, Pages 349- 364, 2018. 3. Наумов А.Е. Совершенствование технологии строительства и технической экспертизы с использованием аппаратно-программного комплекса автоматизированной дефектоскопии / А.Е. Наумов, Д.А. Юдин, А.В. Долженко // Вестник Белгородского государственного технологического университета. ВГ Шухов. – 2019. – № 4. – С. 61-69., Naumov A.E. Improvement of construction technology and technical expertise using hardware and software complex of automated flaw detection / A.E. Naumov, D.A. YUdin, A.V. Dolzhenko // Bulletin of BSTU named after V.G. Shukhov. – 2019. – № 4. – S. 61-69. 4. Сикорский О.С. Обзор сверточных нейронных сетей для задачи классификации изображений / О.С. Сикорский // Новые информационные технологии в автоматизированных системах. – 2017. – № 3. – С. 15-23., Sikorskij O.S. Overview of convolutional neural networks for image classification problem / O.S. Sikorskij // New information technologies in automated systems. – 2017. – № 3. – S. 15-23. 5. Соснин А.С., Суслова И.А. Функции активации нейронной сети: сигмовидная, линейная, ступенчатая, ReLu, tan // Наука. Информатизация. Технологии. Образование. - Екатеринбург:, 2019. - С. 237-246., Sosnin A.S., Suslova I.A. Neural network activation functions: sigmoid, linear, stepwise, ReLu, tan // The science. Informatization. Technologies. Education. - Ekaterinburg:, 2019. - S. 237-246.
|
|