Optimization of safety on construction sites with using artificial intelligence to recognize construction equipment

Author:

Garyaev Andrey1,Garyaeva Venera1

Affiliation:

1. Moscow State University of Civil Engineering

Abstract

The paper explores the application of artificial intelligence (AI) to identify construction equipment using CCTV cameras on construction sites. The main goal is to increase safety levels, optimize construction processes and increase productivity. The research covers the analysis of world and Russian experience in creating neural networks, collecting data on construction equipment and developing an AI model for recognizing and classifying machines based on their visual characteristics. The system was also tested to evaluate its accuracy and efficiency. The article discusses various approaches to training neural networks, including supervised and unsupervised learning, reinforcement learning, transfer learning, generative adversarial networks, convolutional and recurrent neural networks, autoencoders, and hybrid models. Particular attention is paid to integrating AI with other aspects of construction site safety, including alarm systems, emergency response and personnel training. This research proposes a multi-layered approach to construction site safety, ensuring not only accident prevention but also improved work processes. Ultimately, the application of AI on construction sites helps create a safer, more organized and controlled work environment, which is critical for large construction projects.

Publisher

RIOR Publishing Center

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

Reference8 articles.

1. Акинин, М. В. Нейросетевые системы искусственного интеллекта в задачах обработки изображений / М.В. Акинин, М.Б. Никифоров, А.И. Таганов. - М.: РиС, 2016. - 152 c, Akinin, M.V. Neural network systems of artificial intelligence in image processing tasks / M.V. Akinin, M.B. Nikiforov, A.I. Taganov. - M.: RiS, 2016. - 152 p.

2. Баррет, Д. Последнее изобретение человечества: искусственный интеллект и конец эры Homo sapiens / Д. Баррет. — М. : Альпина нон-фикшн, 2015. — 304 с., Barrett, D. The last invention of mankind: artificial intelligence and the end of the era of Homo sapiens / D. Barrett. - M.: Alpina non-fiction, 2015. - 304 p.

3. Боровская, Е. В. Основы искусственного интеллекта: учеб, пособие / Е. В. Боровская, Н. А. Давыдова. — М. : БИНОМ. Лаборатории знаний, 2014. - 127 с., Borovskaya, E. V. Fundamentals of artificial intelligence: textbook, manual / E. V. Borovskaya, N. A. Davydova. - M.: BINOM. Knowledge Laboratories, 2014. - 127 p.

4. Демкин В. И. История и перспективы развития нейронных сетей / В.И. Демкин, Д. К.Луков // Вестник современных исследований. - 2018. - № 6.1 (21). - С. 366-368., Demkin V.I. History and prospects for the development of neural networks / V.I. Demkin, D.K. Lukov // Bulletin of modern research. - 2018. - No. 6.1 (21). - Pp. 366-368.

5. Джонс, М. Т. Программирование искусственного интеллекта в приложениях / М. Т. Джонс ; пер. с англ. А. И. Осипов. - М. : ДМК Пресс, 2018. - 311 с., Jones, M. T. Programming artificial intelligence in applications / M. T. Jones; lane from English A. I. Osipov. - M.: DMK Press, 2018. - 311 p.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3