Mechanical Activation as a Method to Regulate Morphology, Texture and Surface Functional Composition of Carbon-Mineral Materials Derived from Sapropel

Author:

Krivonos O.I.,Belskaya O.B.,Likholobov V.A.

Abstract

Data on the synthesis of carbon-mineral materials (CMM) through carbonization of native sapropel after preliminary mechanical activation (MA) in the air environment are presented. The effect of MA parameters (time, the size and acceleration of milling bodies) on the fractional composition and morphology of sapropel is investigated. MA for 5‒10 min promotes the dispersion of sapropel particles, while a further increase in treatment time causes their partial agglomeration. It is demonstrated that preliminary MA of native sapropel leads to changes in the texture parameters and acidity of the surface of CMM obtained after the carbonization stage. An increase in specific surface area from 90 to 560 m2g-1 is observed, with an increase in the adsorption pore volume from 0.16 to 0.52 cm3g-1 as a result of an increase in the fraction of micropores in the formed CMM. Despite this fact, CMM samples still contain large pores, and the fraction of meso- and macropores is 70%. In addition, a decrease in pH of the point of zero charge occurs as a consequence of an increase in the content of acidic oxygen-containing groups. The discovered effect is essential for the formation of sapropel-based materials with required properties and for broadening their application area.

Publisher

Institute of Combustion Problems

Subject

Condensed Matter Physics,General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3