Comparison of different strategies for modelling hydrogen atoms in charge density analyses

Author:

Köhler Christian,Lübben Jens,Krause Lennard,Hoffmann ChristinaORCID,Herbst-Irmer RegineORCID,Stalke DietmarORCID

Abstract

The quality of various approximation methods for modelling anisotropic displacement parameters (ADPs) for hydrogen atoms was investigated in a comparative study. A multipole refinement was performed against high-resolution single crystal X-ray data of 9-diphenylthiophosphoranylanthracene (SPAnH) and 9,10-bis-diphenylthiophosphoranylanthracene·toluene (SPAnPS). Hydrogen-atom parameters and structural properties derived from our collected neutron data sets were compared with those obtained from the SHADE-server, the software APD-Toolkit based on the invariom database, the results from Hirshfeld atom refinement conducted in the OLEX2 GUI (HARt), and the results of anisotropic hydrogen refinement within XD2016. Additionally, a free refinement of H-atom positions against X-ray data was performed with fixed ADPs from various methods. The resulting C—H bond distances were compared with distances from neutron diffraction experiments and the HARt results. Surprisingly, the refinement of anisotropic hydrogen displacement parameters against the X-ray data yielded the smallest deviations from the neutron values. However, the refinement of bond-directed quadrupole parameters turned out to be vital for the quality of the resulting ADPs. In both model structures, SHADE and, to a lesser extent, APD-Toolkit showed problems in dealing with atoms bonded to carbon atoms with refined Gram-Charlier parameters for anharmonic motion. The HARt method yields the most accurate C—H bond distances compared to neutron data results. Unconstrained refinement of hydrogen atom positions using ADPs derived from all other used approximation methods showed that even with well approximated hydrogen ADPs, the resulting distances were still significantly underestimated.

Funder

Danish National Research Foundation

Fonds der Chemischen Industrie

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3