Structure factors and charge-density study of diamond at 800 K
-
Published:2018-11-20
Issue:6
Volume:74
Page:651-659
-
ISSN:2052-5206
-
Container-title:Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials
-
language:
-
Short-container-title:Acta Crystallogr Sect B
Author:
Deguchi Yuka,
Nishibori EijiORCID
Abstract
The structure factors of diamond were determined by synchrotron radiation X-ray powder diffraction at 800 K at sin θ/λ ≤ 2.2 Å−1 reciprocal resolution. The structure factors were estimated using six powder profiles measured on beamline BL02B2 at SPring-8 (Hyogo, Japan). A high reciprocal resolution at sin θ/λ ≤ 2.2 Å−1 was required to reveal the temperature dependence of the charge density, due to the high Debye temperature of θD = 1860 K of diamond. Wide 2θ angle data with the highest counting statistics are crucial for accurate data analysis. The periodic noise of every six-pixel step was observed in the highest counting statistics imaging plate (IP) data scanned by a BAS2500 IP scanner. It was found that the noise originated from the six-sided polygonal mirror in the scanner. The intensity fluctuation at every six-pixel step was also found in the Fourier series expansion of the powder profiles. The ratio of the maximum fluctuation was estimated as 0.4% by summing all six-pixel step data. The powder profiles were corrected by multiplying the ratios. The intensity fluctuation in the background region was reduced to less than 50% of the uncorrected data. The weak 888 Bragg reflection, with an intensity of 0.005% of that of the 111 Bragg reflection at 800 K, was readily observed in the corrected data. Finally, the structure factors determined at 800 K were successfully applied to a charge-density study by multipole modelling. The reliability factors and multipole parameters at 800 K are in agreement with those at 300 K. The differences in the charge density at the bond midpoint and ∇2ρ at the bond-critical point were less than 1% and 2%, respectively.
Funder
Japan Society for the Promotion of Science
Casio Science Promotion Foundation
Publisher
International Union of Crystallography (IUCr)
Subject
Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献