Experimental observation of charge-shift bond in fluorite CaF2

Author:

Stachowicz Marcin,Malinska MauraORCID,Parafiniuk Jan,Woźniak KrzysztofORCID

Abstract

On the basis of a multipole refinement of single-crystal X-ray diffraction data collected using an Ag source at 90 K to a resolution of 1.63 Å−1, a quantitative experimental charge density distribution has been obtained for fluorite (CaF2). The atoms-in-molecules integrated experimental charges for Ca2+and Fions are +1.40 e and −0.70 e, respectively. The derived electron-density distribution, maximum electron-density paths, interaction lines and bond critical points along Ca2+...Fand F...Fcontacts revealed the character of these interactions. The Ca2+...Finteraction is clearly a closed shell and ionic in character. However, the F...Finteraction has properties associated with the recently recognized type of interaction referred to as `charge-shift' bonding. This conclusion is supported by the topology of the electron localization function and analysis of the quantum theory of atoms in molecules and crystals topological parameters. The Ca2+...Fbonded radii – measured as distances from the centre of the ion to the critical point – are 1.21 Å for the Ca2+cation and 1.15 Å for the Fanion. These values are in a good agreement with the corresponding Shannon ionic radii. The F...Fbond path and bond critical point is also found in the CaF2crystal structure. According to the quantum theory of atoms in molecules and crystals, this interaction is attractive in character. This is additionally supported by the topology of non-covalent interactions based on the reduced density gradient.

Funder

Polish Ministry of Science and Higher Education for the Mobility Plus Fund

Polish National Science Centre NCN

Publisher

International Union of Crystallography (IUCr)

Subject

Materials Chemistry,Metals and Alloys,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3