Automated spectrometer alignment via machine learning

Author:

Feuer-Forson PeterORCID,Hartmann Gregor,Mitzner Rolf,Baumgärtel PeterORCID,Weniger ChristianORCID,Agåker MarcusORCID,Meier David,Wernet Phillipe,Viefhaus JensORCID

Abstract

During beam time at a research facility, alignment and optimization of instrumentation, such as spectrometers, is a time-intensive task and often needs to be performed multiple times throughout the operation of an experiment. Despite the motorization of individual components, automated alignment solutions are not always available. In this study, a novel approach that combines optimisers with neural network surrogate models to significantly reduce the alignment overhead for a mobile soft X-ray spectrometer is proposed. Neural networks were trained exclusively using simulated ray-tracing data, and the disparity between experiment and simulation was obtained through parameter optimization. Real-time validation of this process was performed using experimental data collected at the beamline. The results demonstrate the ability to reduce alignment time from one hour to approximately five minutes. This method can also be generalized beyond spectrometers, for example, towards the alignment of optical elements at beamlines, making it applicable to a broad spectrum of research facilities.

Funder

Bundesministerium für Bildung und Forschung

Swedish Research Council

Publisher

International Union of Crystallography (IUCr)

Reference18 articles.

1. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. (2019). arXiv: 1907.10902.

2. Ultrafast static and diffusion-controlled electron transfer at Ag29 nanocluster/molecular acceptor interfaces

3. Baumgärtel, P., Grundmann, P., Zeschke, T., Erko, A., Viefhaus, J., Schäfers, F. & Schirmacher, H. (2019). AIP Conf. Proc. 2054, 060034.

4. Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. (2011). Proceedings of the 24th International Conference on Neural Information Processing Systems (NIPS'11), 12-15 December 2011, Granada, Spain, pp. 2546-2554. Red Hook: Curran Associates Inc.

5. Design and optimization of a parallel spectrometer for ultra-fast X-ray science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3