Minimizing experimental artefacts in synchrotron-based X-ray analyses of Fe speciation in tissues of rice plants

Author:

Wang PengORCID,McKenna Brigid A.,Menzies Neal W.,Li Cui,Glover Chris J.,Zhao Fang-Jie,Kopittke Peter M.ORCID

Abstract

Iron (Fe) plays an important role within environmental systems. Synchrotron-based X-ray approaches, including X-ray absorption spectroscopy (XAS), provide powerful tools for in situ analyses of Fe speciation, but beam damage during analysis may alter Fe speciation during its measurement. XAS was used to examine whether experimental conditions affect the analysis of Fe speciation in plant tissues. Even when analyzed in a cryostat at 12 K, it was found that FeIII can rapidly (within 0.5–1 min) photoreduce to FeII, although the magnitude of photoreduction varied depending upon the hydration of the sample, the coordination chemistry of the Fe, as well as other properties. For example, photoreduction of FeIII was considerably higher for aqueous standard compounds than for hydrated plant-root tissues. The use of freeze-dried samples in the cryostat (12 K) markedly reduced the magnitude of this FeIII photoreduction, and there was no evidence that the freeze-drying process itself resulted in experimental artefacts under the current experimental conditions, such as through the oxidation of FeII, although some comparatively small differences were observed when comparing spectra of hydrated and freeze-dried FeII compounds. The results of this study have demonstrated that FeIII photoreduction can occur during X-ray analysis, and provides suitable conditions to preserve Fe speciation to minimize the extent of beam damage when analyzing environmental samples. All studies utilizing XAS are encouraged to include a preliminary experiment to determine if beam damage is occurring, and, where appropriate, to take the necessary steps (such as freeze drying) to overcome these issues.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Nanjing Agricultural University

University of Queensland

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3