Abstract
Iron (Fe) plays an important role within environmental systems. Synchrotron-based X-ray approaches, including X-ray absorption spectroscopy (XAS), provide powerful tools for in situ analyses of Fe speciation, but beam damage during analysis may alter Fe speciation during its measurement. XAS was used to examine whether experimental conditions affect the analysis of Fe speciation in plant tissues. Even when analyzed in a cryostat at 12 K, it was found that FeIII can rapidly (within 0.5–1 min) photoreduce to FeII, although the magnitude of photoreduction varied depending upon the hydration of the sample, the coordination chemistry of the Fe, as well as other properties. For example, photoreduction of FeIII was considerably higher for aqueous standard compounds than for hydrated plant-root tissues. The use of freeze-dried samples in the cryostat (12 K) markedly reduced the magnitude of this FeIII photoreduction, and there was no evidence that the freeze-drying process itself resulted in experimental artefacts under the current experimental conditions, such as through the oxidation of FeII, although some comparatively small differences were observed when comparing spectra of hydrated and freeze-dried FeII compounds. The results of this study have demonstrated that FeIII photoreduction can occur during X-ray analysis, and provides suitable conditions to preserve Fe speciation to minimize the extent of beam damage when analyzing environmental samples. All studies utilizing XAS are encouraged to include a preliminary experiment to determine if beam damage is occurring, and, where appropriate, to take the necessary steps (such as freeze drying) to overcome these issues.
Funder
National Natural Science Foundation of China
Ministry of Education of the People's Republic of China
Nanjing Agricultural University
University of Queensland
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献