On-line monitoring of the spatial properties of hard X-ray free-electron lasers based on a grating splitter

Author:

Hua WenqiangORCID,Zhou Guangzhao,Hu Zhe,Yang Shumin,Liao Keliang,Zhou Ping,Dong Xiaohao,Wang Yuzhu,Bian Fenggang,Wang Jie

Abstract

X-ray free-electron lasers (XFELs) play an increasingly important role in addressing the new scientific challenges relating to their high brightness, high coherence and femtosecond time structure. As a result of pulse-by-pulse fluctuations, the pulses of an XFEL beam may demonstrate subtle differences in intensity, energy spectrum, coherence, wavefront, etc., and thus on-line monitoring and diagnosis of a single pulse are required for many XFEL experiments. Here a new method is presented, based on a grating splitter and bending-crystal analyser, for single-pulse on-line monitoring of the spatial characteristics including the intensity profile, coherence and wavefront, which was suggested and applied experimentally to the temporal diagnosis of an XFEL single pulse. This simulation testifies that the intensity distribution, coherence and wavefront of the first-order diffracted beam of a grating preserve the properties of the incident beam, by using the coherent mode decomposition of the Gaussian–Schell model and Fourier optics. Indicatively, the first-order diffraction of appropriate gratings can be used as an alternative for on-line monitoring of the spatial properties of a single pulse without any characteristic deformation of the principal diffracted beam. However, an interesting simulation result suggests that the surface roughness of gratings will degrade the spatial characteristics in the case of a partially coherent incident beam. So, there exists a suitable roughness value for non-destructive monitoring of the spatial properties of the downstream beam, which depends on the specific optical path. Here, experiments based on synchrotron radiation X-rays are carried out in order to verify this method in principle. The experimental results are consistent with the theoretical calculations.

Funder

National Natural Science Foundation of China

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Reference29 articles.

1. Abbamonte, P., Abild-Pedersen, F., Adams, P., Ahmed, M., Albert, F., Mori, R. A., Anfinrud, P., Aqui-La, A., Armstrong, M. & Arthur, J. (2015). Report SLAC-R-1053. SLAC National Accelerator Laboratory, Menlo Park, CA, USA.

2. Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser

3. EUV Hartmann sensor for wavefront measurements at the Free-electron LASer in Hamburg

4. Development of a hard x-ray wavefront sensor for the EuXFEL

5. Linac Coherent Light Source: The first five years

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3