Improving the detection efficiency and modulation transfer function of lens-coupled indirect X-ray imaging detectors based on point spread functions simulated according to lens performance parameters

Author:

Wang YanpingORCID,Li Gang,Zhang Jie,Yi Qiru,Zhao Yue,Li KunORCID,Zhu Ye,Jiang Xiaoming

Abstract

Lens-coupled indirect X-ray imaging detectors have the advantage of high resolution and the disadvantage of low detection efficiency. Using thicker single-crystalline films (SCFs) can improve the detection efficiency. However, the image quality will become worse due to the degradation of the point spread function (PSF) and modulation transfer function (MTF). This disadvantage can be improved by deconvolution with the PSF, which is unknown. In this article, a method was established to acquire the PSF based on a simulation of the imaging process for a lens-coupled indirect X-ray imaging detector. Because the structural parameters of commercial lenses cannot usually be obtained, the PSFs were calculated from lens performance parameters. PSFs were calculated using the conditions of 12 keV X-ray energy, 10× and 40× magnification objectives and 4.6 µm- and 20 µm-thick GGG:Tb scintillators. These were then used to deconvolve images of an Xradia resolution test pattern taken under the same conditions. The results show that after deconvolution the MTF had been clearly improved for both the 4.6 µm- and 20 µm-thick SCFs, indicating that the image has better quality than before deconvolution. Furthermore, a PSF deconvolution was performed on mouse brain tissue projection images, and the original and deconvolution projection images were used to perform computed-tomography reconstruction; the result proved that the method was effective for improving the image quality of low-contrast samples. Therefore, this method shows promise in allowing the use of thick SCFs to improve the detection efficiency while maintaining good image quality.

Funder

National Science Foundation of China

Chinese Academy of Science

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3