Direct non-destructive total reflection X-ray fluorescence elemental determinations in zirconium alloy samples

Author:

Sanyal KaushikORCID,Kanrar BuddhadevORCID,Dhara Sangita,Sibilia Mirta,Sengupta Arijit,Karydas Andreas GermanosORCID,Mishra Nand LalORCID

Abstract

The development of a direct non-destructive synchrotron-radiation-based total reflection X-ray fluorescence (TXRF) analytical methodology for elemental determinations in zirconium alloy samples is reported for the first time. Discs, of diameter 30 mm and about 1.6 mm thickness, of the zirconium alloys Zr-2.5%Nb and Zircalloy-4 were cut from plates of these alloys and mirror polished. These specimens were presented for TXRF measurements directly after polishing and cleaning. The TXRF measurements were made at the XRF beamline at Elettra synchrotron light source, Trieste, Italy, at two different excitation energies, 1.9 keV and 14 keV, for the determinations of low- and high-Z elements, respectively. The developed analytical methodology involves two complementary quantification schemes, i.e. using either the fundamental parameter method or relative sensitivity based method, allowing quantification of fifteen minor and trace elements with respect to Zr with very good precision and accuracy. In order to countercheck the TXRF analytical results, some samples were analyzed using the DC arc carrier distillation atomic emission spectrometry technique also, which shows an excellent agreement with the results of the TXRF-based methodology developed in this work. The present work resulted in a non-destructive TXRF elemental characterization methodology of metal and alloy samples avoiding the cumbersome dissolution and matrix separation which are normally required in other techniques and traditional methods of TXRF determination. In addition, the production of analytical waste could also be avoided to a large extent. Although the work was carried out for specific applications in the nuclear industry, it is equally suitable for other such samples in different industrial applications.

Funder

International Atomic Energy Agency

Department of Science and Technology (DST), Government of India, New Delhi

ICTP (International Centre for Theoretical Physics), Trieste, Italy

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3