Abstract
The focusing and coherence properties of the NanoMAX Kirkpatrick–Baez mirror system at the fourth-generation MAX IV synchrotron in Lund have been characterized. The direct measurement of nano-focused X-ray beams is possible by scanning of an X-ray waveguide, serving basically as an ultra-thin slit. In quasi-coherent operation, beam sizes of down to 56 nm (FWHM, horizontal direction) can be achieved. Comparing measured Airy-like fringe patterns with simulations, the degree of coherence |μ| has been quantified as a function of the secondary source aperture (SSA); the coherence is larger than 50% for SSA sizes below 11 µm at hard X-ray energies of 14 keV. For an SSA size of 5 µm, the degree of coherence has been determined to be 87%.
Funder
Deutsche Forschungsgemeinschaft
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献