Investigation of the local structure of molten ThF4–LiF and ThF4–LiF–BeF2 mixtures by high-temperature X-ray absorption spectroscopy and molecular-dynamics simulation

Author:

Sun Jian,Guo Xiaojing,Zhou Jing,Dai Jianxing,Song Sanzhao,Bao Hongliang,Lin JianORCID,Yu Haisheng,He Shangming,Jiang Feng,Long Dewu,Zhang Linjuan,Wang Jian-Qiang

Abstract

The microscopic structures of ThF4–LiF and ThF4–LiF–BeF2 molten salts have been systematically investigated by in situ high-temperature X-ray absorption fine-structure (XAFS) spectroscopy combined with molecular-dynamics (MD) simulations. The results reveal that the local structure of thorium ions was much more disordered in the molten state of the ThF4–LiF–BeF2 salt than that in ThF4–LiF, implying that the Th and F ions were exchanged more frequently in the presence of Be ions. The structures of medium-range-ordered coordination shells (such as Th–F2nd and Th–Th) have been emphasized by experimental and theoretical XAFS analysis, and they play a significant role in transport properties. Using MD simulations, the bonding properties in the molten ThF4–LiF and ThF4–LiF–BeF2 mixtures were evaluated, confirming the above conclusion. This research is, to the best of our knowledge, the first systematic study on the ThF4–LiF–BeF2 molten salt via quantitative in situ XAFS analysis and MD simulations.

Funder

"Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Joint Funds of the National Natural Science Foundation of China

Youth Innovation Promotion Association, Chinese Academy of Sciences

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3