Design of an online spectrometer for the diagnosis of free-electron lasers

Author:

Zhang Ximing,Guo Zhi,Meng Xiangyu,Chen Jiahua,Ji Zhan,Jin Zuanming,Zhang Xiangzhi,Wang YongORCID,Tai Renzhong

Abstract

A self-amplified spontaneous emission free-electron laser (FEL) is under construction at the Shanghai Soft X-ray Free-Electron Facility. Therefore, it is necessary to develop a suitable diagnostic tool capable of resolving the natural emission band of each FEL pulse. Thus, an online spectrometer with a plane mirror and plane variable-line-spacing grating at grazing incidence to monitor each single FEL pulse during the propagation of FEL radiation has been designed and is presented in this work. The method of ray tracing is used for monitoring incident radiation in order to understand spectral characteristics, and SHADOW, an X-ray optics simulation tool, and SRW, an X-ray optics wavefront tool, are applied to study the resolving power and focusing properties of the grating. The designed resolving power is ∼3 × 104 at 620 eV. Meanwhile, the effect of the actual slope error of mirrors on the ray-tracing results is also discussed. In order to provide further optimization for the choice of grating, a comparison of resolving powers between 2000 lines mm−1 and 3000 lines mm−1 gratings at different energies is analyzed in detail and radiation damage of mirrors as well as parameters such as the first-order diffraction angle β, the exit-arm length r 2, and the tilt angle θ between the focal plane and the diffraction arm are studied and optimized. This work has provided comprehensive designing methods and detailed data for the design of diagnostic spectrometers in soft X-ray FELs and will be favorable to the design of other similar instruments.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3