synapse: interactive support on photoemission spectroscopy measurement and analysis for non-expert users

Author:

Masuda Takuma,Kobayashi Masaki,Yatani Koji

Abstract

Photoemission spectroscopy, an experimental method based on the photoelectric effect, is now an indispensable technique used in various fields such as materials science, life science, medicine and nanotechnology. However, part of the experimental process of photoemission spectroscopy relies on experience and intuition, which is obviously a problem for novice users. In particular, photoemission spectroscopy experiments using high-brilliance synchrotron radiation as a light source are not easy for novice users because measurements must be performed quickly and accurately as scheduled within a limited experimental period. In addition, research on the application of information science methods to quantum data measurement, such as photoemission spectroscopy, is mainly aimed at the development of analysis methods, and few attempts have been made to clarify the problems faced by users who lack experience. In this study, the problems faced by novice users of photoemission spectroscopy are identified, and a native application named synapse with functions to solve these problems is implemented and evaluated qualitatively and quantitatively. This paper describes the contents of an interview survey, the functional design and the implementation of the application synapse based on the interview survey, and results and discussion of the evaluation experiment.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3