Extraction of local coordination structure in a low-concentration uranyl system by XANES

Author:

Zhang Linjuan,Zhou Jing,Zhang Jianyong,Su Jing,Zhang Shuo,Chen Ning,Jia Yunpeng,Li Jiong,Wang Yu,Wang Jian-Qiang

Abstract

Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoreticalL3-edge X-ray absorption near-edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1= 168.3/R(U—Oax)2− 38.5 (for the axial plane) and ΔE2= 428.4/R(U—Oeq)2− 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the UL3-edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X-ray absorption fine-structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl–ligand complexes, such as the uranyl–carbonate complex. Most importantly, the XANES research method could be extended to low-concentration uranyl systems, as indicated by the results of the uranyl–amidoximate complex (∼40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides.

Publisher

International Union of Crystallography (IUCr)

Subject

Instrumentation,Nuclear and High Energy Physics,Radiation

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3