Stability of TaC precipitates in a Co–Re-based alloy being developed for ultra-high-temperature applications

Author:

Gilles Ralph,Mukherji Debashis,Karge Lukas,Strunz Pavel,Beran Premysl,Barbier Bruno,Kriele Armin,Hofmann Michael,Eckerlebe Helmut,Rösler Joachim

Abstract

Co–Re alloys are being developed for ultra-high-temperature applications to supplement Ni-based superalloys in future gas turbines. The main goal of the alloy development is to increase the maximum service temperature of the alloy beyond 1473 K,i.e.at least 100 K more than the present single-crystal Ni-based superalloy turbine blades. Co–Re alloys are strengthened by carbide phases, particularly the monocarbide of Ta. The binary TaC phase is stable at very high temperatures, much greater than the melting temperature of superalloys and Co–Re alloys. However, its stability within the Co–Re–Cr system has never been studied systematically. In this study an alloy with the composition Co–17Re–23Cr–1.2Ta–2.6C was investigated using complementary methods of small-angle neutron scattering (SANS), scanning electron microscopy, X-ray diffraction and neutron diffraction. Samples heat treated externally and samples heatedin situduring diffraction experiments exhibited stable TaC precipitates at temperatures up to 1573 K. The size and volume fraction of fine TaC precipitates (up to 100 nm) were characterized at high temperatures within situSANS measurements. Moreover, SANS was used to monitor precipitate formation during cooling from high temperatures. When the alloy is heated the matrix undergoes an allotropic phase transformation from the ∊ phase (hexagonal close-packed) to the γ phase (face-centred cubic), and the influence on the strengthening TaC precipitates was also studied within situSANS. The results show that the TaC phase is stable and at these high temperatures the precipitates coarsen but still remain. This makes the TaC precipitates attractive and the Co–Re alloys a promising candidate for high-temperature application.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Reference25 articles.

1. An X-ray goniometer using beams of large aperture for photographically recording crystal-powder reflections

2. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions

3. Chengge, J. (2014). Personal communication, FEI Applications Laboratory, Eindhoven, The Netherlands.

4. Depka, T. (2012). PhD thesis, Ruhr Universität Bochum, Germany.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3