Abstract
A new procedure for determining the degree of crystallinity (DOC) has been recently proposed, and it has been verified using experimental and computer-generated powder diffractometry data [Toraya (2023). J. Appl. Cryst.
56, 1751–1763]. As an application to real materials like engineering plastics, this procedure is here applied to the DOC determination of plate-like polyphenylene sulfide (PPS) samples, composited with crystalline and non-crystalline fillers. The coexistence of partially crystallized polymer with non-crystalline fillers in target materials makes it difficult to separate the non-crystalline part of the partially crystallized polymer. This problem is here solved by the inverse application of the direct derivation (DD) method for quantitative phase analysis (QPA). The intensity–composition (IC) formula used in the DD method can derive the weight fractions of the individual components from just the total sums of observed intensities and the chemical composition data for these components [Toraya (2016). J. Appl. Cryst.
49, 1508–1516]. For the present purpose, the IC formula has been inversely applied to calculate the relative intensity ratios of individual components under the assumption that the chemical compositions and weight fractions of the respective components are known. The total halo intensity could then be separated into the non-crystalline part of the polymer and the non-crystalline filler. Analyzed results of PPS composites in four different DOCs are reported.
Publisher
International Union of Crystallography (IUCr)