On the design and experimental realization of a multislit-based very small angle neutron scattering instrument at the European Spallation Source

Author:

Abbas Sohrab,Désert Sylvain,Brûlet Annie,Thevenot Vincent,Permingeat Patrice,Lavie Pascal,Jestin Jacques

Abstract

This article reports the design of a versatile multislit-based very small angle neutron scattering (VSANS) instrument working either as a dedicated instrument or as an add-on for any small-angle neutron scattering machine like the proposed SANS instrument, SKADI, at the future European Spallation Source. The use of multiple slits as a VSANS collimator for the time-of-flight techniques has been validated usingMcStassimulations. Various instrument configurations to achieve different minimum wavevector transfers in scattering experiments are proposed. The flexibility of the multislit VSANS instrument concept is demonstrated by showing the possibility of instrument length scaling for the first time, allowing access to varying minimum wavevector transfers with the same multislit setup. These options can provide smooth access to minimum wavevector transfers lower than ∼4 × 10−5 Å−1and an overlapping of wavevector coverage with normal SANS mode,e.g.with the SKADI wavevector range of 10−3–1.1 Å−1. Such an angularly well defined and intense neutron beam will allow faster SANS studies of objects larger than 1 µm. Calculations have also been carried out for a radial collimator as an alternative to the multislit collimator setup. This extends the SANSQrange by an order of magnitude to 1 × 10−4 Å−1with much simpler alignment. The multislit idea has been realized experimentally by building a prototype at Laboratoire Leon Brillouin, Saclay, with cross-talk-free geometry. Feasibility studies were carried out by making VSANS measurements with single- and multislit collimators, and the results are compared with multiple-pinhole geometry using classical SANS analysis tools.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3