Approaches and challenges in whole-nanoparticle refinements from neutron total-scattering data

Author:

Cladek Bernadette,Zhang Yuanpeng,Maier Russell,Ravel BruceORCID,Tucker Matthew G.,Levin Igor

Abstract

This study considers critical data reduction steps and data analysis approaches required to determine explicitly the atomic arrangements in nanoparticles from time-of-flight neutron total scattering. A practical procedure is described for removing parasitic backgrounds caused by the incoherent scattering of hydrogen inevitably present in most nanoparticle samples and normalizing the recovered coherent scattering intensities onto an absolute scale. A model-free analysis is presented of a pair-distribution function derived from total scattering that can be used to determine thermal expansion coefficients and particle sizes directly from experimental data without knowledge of the material's structure. Finally, atomistic whole-nanoparticle refinements of yttrium-doped ceria nanoparticles from neutron total-scattering data are demonstrated using the reverse Monte Carlo method implemented in the RMCProfile software. These results reveal a strong dependence of the cation–oxygen and oxygen–oxygen distances on the coordination numbers, which leads to gradients of these distances near the particle surface. The details are dependent on the surface coverage by ligands and adsorbates and on the structure of grain boundaries in nanocrystalline agglomerates. The refined models confirm the expectations of more substantial disorder at particle surfaces, with a distorted surface layer extending over several coordination shells. The results highlight the feasibility of whole-nanoparticle refinements from neutron data, calling for further development of data reduction and analysis procedures.

Funder

U.S. Department of Commerce, National Institute of Standards and Technology

U.S. Department of Energy, Office of Science

Publisher

International Union of Crystallography (IUCr)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3