Describing small-angle scattering profiles by a limited set of intensities

Author:

Grant Thomas D.

Abstract

Small-angle scattering (SAS) probes the size and shape of particles at low resolution through the analysis of the scattering of X-rays or neutrons passing through a solution of particles. One approach to extracting structural information from SAS data is the indirect Fourier transform (IFT). The IFT approach parameterizes the real-space pair distribution function [P(r)] of a particle using a set of basis functions, which simultaneously determines the scattering profile [I(q)] using corresponding reciprocal-space basis functions. This article presents an extension of an IFT algorithm proposed by Moore [J. Appl. Cryst. (1980), 13, 168–175] which used a trigonometric series to describe the basis functions, where the real-space and reciprocal-space basis functions are Fourier mates. An equation is presented relating the Moore coefficients to the intensities of the SAS profile at specific positions, as well as a series of new equations that describe the size and shape parameters of a particle from this distinct set of intensity values. An analytical real-space regularizer is derived to smooth the P(r) curve and ameliorate systematic deviations caused by series termination. Regularization is commonly used in IFT methods though not described in Moore's original approach, which is particularly susceptible to such effects. The algorithm is provided as a script, denss.fit_data.py, as part of the DENSS software package for SAS, which includes both command line and interactive graphical interfaces. Results of the program using experimental data show that it is as accurate as, and often more accurate than, existing tools.

Funder

National Institute of General Medical Sciences

National Science Foundation, BioXFEL Science and Technology Center

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3