Quantitative phase analysis of Bi2Sr2CaCu2O8+x and competing intergrowth and co-crystallizing phases via a Rietveld refinement study

Author:

Rajak Neeraj K.,Mohan Arya,Jaiswal-Nagar Deepshikha

Abstract

The Rietveld refinement technique has been used to determine the extent of intergrowth of the Bi2Sr2CuO6+x phase and co-crystallization of competing phases in the high-temperature superconductor Bi2Sr2CaCu2O8+x (Bi-2212). The refinement was done on powder diffractograms obtained on powders made by grinding single crystals of Bi2Sr2CaCu2O8+x grown using two different self-flux techniques, namely the pressure technique and the regrowth technique, and ground for either 2 min or 2 h. The Rietveld programs JANA and FULLPROF were used for the refinement and both gave consistent results. The Bi and Sr atom positions were refined in the average structure of centrosymmetric space group Bbmb. To incorporate Bi-atom modulation and extract information about the modulation vector, refinement was done in the centrosymmetric space group N^{Bbmb}_{1\overline 11}(Bbmb(0γ1)). The b* component of the modulation vector decreases with a decrease in the superconducting transition temperature in the pressure-technique sample compared with the regrowth sample, suggesting a better alignment of the CuO2 planes with respect to the Bi–O planes in the pressure-technique sample. All the samples exhibit a strong preferred orientation effect. Values of the March–Dollase parameters corresponding to the preferred orientation function were obtained. Brindley absorption contrast factors t ϕ were also calculated, together with the effect of microabsorption on the number of phases present in each sample. Rietveld refinements incorporating all the factors resulted in excellent values for the goodness-of-fit parameters for all the samples, with the lowest value of 2.08 for the pressure-technique sample ground for 2 min. Additionally, the powders corresponding to the pressure-technique crystals have no co-crystallizing phase and ∼94% of the Bi-2212 phase, suggesting that crystals grown by the pressure technique are of extremely good quality, much better than those grown by the regrowth flux technique.

Funder

Department of Science and Technology, Government of India

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3