c-Oriented YBa2Cu3O7−δ film with embedded a-oriented grains grown by liquid phase epitaxy under fine-tuning supersaturation

Author:

Xiang Hui,Qian Jun,Wang Wei,Wan Yan,Yao Xin,Zhou Ligang

Abstract

The performance of superconductor films is related to their crystallographic orientations, which are strongly dependent on the supersaturation (σ) in the solution used for liquid phase epitaxy (LPE). To date, except for two extreme states, low and high σ for the preparation of a- and c-axis-oriented YBa2Cu3O7−δ films, respectively, little attention has been directed toward intermediate σ, which is of great importance for achieving a variety of artificial microstructures that are in principle difficult to obtain by existing crystal growth methods. Here, a further step is taken towards the comprehension of how the crystallographic orientations and microstructure are correlated with supersaturation. Fine-tuning of σ to an intermediate state is realized by introducing an additional factor, namely the holding time, that adjusts the initially uncertain state to a certain and stable one. This factor is controlled along with the commonly used variables of the amount of fresh solvent material and the melting time. Consequently, for the first time, a composite epitaxial microstructure of a c-axis-oriented YBa2Cu3O7−δ film with embedded a-axis grains on a (110) NdGaO3 substrate was successfully grown by LPE. The epitaxial interface between a- and c-axis grains potentially serves as a flux pinning site. This work provides further insights into how control of artificial microstructures can be used to enhance superconducting properties.

Funder

National Key Research and Development Program of China

NSFC

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3