Determining the shape and periodicity of nanostructures using small-angle X-ray scattering

Author:

Sunday Daniel F.,List Scott,Chawla Jasmeet S.,Kline R. Joseph

Abstract

The semiconductor industry is exploring new metrology techniques capable of meeting the future requirement to characterize three-dimensional structure where the critical dimensions are less than 10 nm. X-ray scattering techniques are one candidate owing to the sub-Å wavelengths which are sensitive to internal changes in electron density. Critical-dimension small-angle X-ray scattering (CDSAXS) has been shown to be capable of determining the average shape of a line grating. Here it is used to study a set of line gratings patternedviaa self-aligned multiple patterning process, which resulted in a set of mirrored lines, where the individual line shapes were asymmetric. The spacing between lines was systematically varied by sub-nm shifts. The model used to simulate the scattering was developed in stages of increasing complexity in order to justify the large number of parameters included. Comparisons between the models at different stages of development demonstrate that the measurement can determine differences in line shapes within the superlattice. The shape and spacing between lines within a given set were determined to sub-nm accuracy. This demonstrates the potential for CDSAXS as a high-resolution nanostructure metrology tool.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex profile metrology via physical symmetry enhanced small angle x-ray scattering;Journal of Applied Physics;2024-06-11

2. CDSAXS study of 3D NAND channel hole etch pattern edge effects and etched hole pattern variance;Metrology, Inspection, and Process Control XXXVIII;2024-04-10

3. Small angle x-ray scattering overlay metrology for advanced nodes;Metrology, Inspection, and Process Control XXXVIII;2024-04-10

4. Cross-evaluation of critical dimension measurement techniques;Journal of Micro/Nanopatterning, Materials, and Metrology;2024-03-08

5. 超快极紫外光源产生及其在半导体检测中的应用(特邀);Acta Optica Sinica;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3